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Since the first two equations of Eqs. (1) are independent of
Bx, which can be found after u and Eg are determined, we
will only study the solutions of u and Ez. Similar to the
method used in a previous paper,2 we use Duhamel's theorem
for a system of coupled equations and find that the solutions
for any given pressure variation are
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Special Cases
/. Sudden Start

We consider the problem that the fluid is initially at rest
and is set in motion by a sudden application of a constant
axial pressure gradient. This readily implies that Ps = 0
and PI = const. Performing the integrations, we find
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As ^—>• oo ? we may recover the steady Hartmann problem.3
Also we may recover the solution in a nonmagnetic field by
letting M-+• 0.

2. Sudden Removal of the Pressure Gradient
A steady state is suddenly changed by the removal of the

pressure gradient. This states that PI = — Ps. The solu-
tions become
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To illustrate the oscillatory nature of the problem, we
present some numerical results of the case of sudden start
with magnetic Prandtl number \/v = 1. Figure 1 shows the
velocity profiles of different Hartmann numbers in dimen-
sionless velocity (pv/PJiz)u at the dimensionless time r =
vt/W = 0.1. Figure 2 gives the time history of the velocity
magnitudes at the center of the channel and that of the aver-
age velocity.
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Nomenclature
a = x-coordinate locating lateral load
C},Cz = integration constants
El = flexural rigidity
k = (P/EIY/2

L = span
M = bending moment
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Table 1 Macauley terms due to lateral loads on axially loaded struts and tie-bars
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Type of lateral load

Load W concentrated at x = a

Uniform load of intensity w
per unit length from x = a
to x = L

Clockwise couple MQ applied
in plane of bending at x = a

Term to be added
to basic bending- Expression to be added to basic deflection equation
moment equation Strut Tie-bar

W W— W(x — a) 77; sin k{x — a) — j^-(x — a)
w 2w . w
2i K r 2.T

2M0IUQ\X a) p sinj ^k(x — a/

W W
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w 2w
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a)

Mo
Mi
P
Ri
W
w
x,y

= applied bending couple
= fixing moment at x = 0
= axial end load
= lateral reaction at x = 0
= concentrated lateral load
= intensity of uniformly distributed load
= coordinates of deflection curve

A RECENT note1 shows that the integration of the dis-
continuous expressions arising in beam deflection prob-

lems may be simplified by the use of Macauley brackets.
The method can be extended to bars which are subjected to
combinations of axial and lateral loads.

Macauley brackets take the form (x — a) and are given the
property that terms containing them are omitted when the
expression inside these brackets becomes negative—that is
when x < a. Thus,

f(x - a) = 0
f(x - a)

for x < a
for x > a

Struts with Hinged Ends
In the notation of Fig. 1 the bending-moment equation for

x < a may be written

M = -Py +'Rix (1)
and this will be termed the basic bending-moment equation.
The substitution of Eq. (1) in the relationship EI(d2y/dx2) =
M leads to the basic deflection equation,

y = Ci sin kx + Cz cos kx + (2)

where k* = P/EI.
If we extend Eq. (1) with a Macauley-bracket term which

allows for the lateral load W we obtain the following equa-
tion which represents the bending moment throughout the
strut:

M- = -Py + Rix - W(x - a) (3)

A single equation representing the deflection curve of the
entire strut must satisfy Eq. (3). Furthermore, the deflec-
tion y and slope dy/dx must be continuous at x = a with un-
changing values of C\ and (72. These conditions are satisfied
by adding to Eq. (2) the expression

(W/kP) sin k(x - a) - (W/P)(x - a}
Table 1 shows the expressions to be added to the basic

bending-moment and deflection equations for the types of
lateral load occurring frequently.

Any number of lateral loads and applied couples can be ac-
commodated in a single deflection equation which requires
only two constants of integration. This contrasts with the

classical solution2 in which the number of equations increases
as more lateral loads are applied.

The reaction Ri may be obtained from the conditions M =
y = 0 at x = L. The constants C\ and (72 are determined
from the end conditions y = 0 when x = 0 and y = 0 when
x = L. The first of these gives (72 = 0.

The term (x — a)° possesses the usual Macauley property.
An example of this occurs in Table 1. Thus,

0 for x < a
M0(x — a)° = M0 for x > a

Struts with Built-in Ends

Table 1 is also applicable to struts with direction-fixed ends.
Suppose the bending moment at the left-hand end is ML.
The basic bending-moment and deflection equations become

M = Mi - Py + Rix
„ • i . ~ 7 . I I xy = Gi sin kx + 62 cos kx + — + —=-

The Macauley terms from Table 1 are added and the values
of Ci,C2,Mi, and Ri are then determined from the conditions
y = dy/dx = 0 when x = 0 and also when x = L. In the
determination of the expression for slope dy/dx the derivative
of the Macauley deflection expression for a concentrated
load W (see Table 1) is written

(TF/P)cos k(x - a) - (W/P}(x - a>°

to insure that the resulting function is continuous at x = a.
However, it is convenient to replace this result by the equiva-
lent single term

-(2TF/P)sin2 - a)

The Bars with Lateral Loads
If we change the axial load P from compressive to tensile,

the basic bending-moment and deflection equations become:
For hinged ends:

M = Py + Rix

y = Ci sinh kx +

For built-in ends:
2 cosh kx — (R\x/P)

Fig. 1

M = M i + Py + Rix

y = d sinh kx + ft cosh kx - (Mi/P) -

The Macauley terms and expressions to be added to these
basic equations are given in Table 1, those for bending
moment being identical with the terms used for struts.
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