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Since the first two equations of Egs. (1) are independent of
B, which can be found after u and E, are determined, we
will only study the solutions of w and E,. Similar to the
method used in a previous paper,? we use Duhamel’s theorem
for a system of coupled equations and find that the solutions
for any given pressure variation are
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Special Cases
1. Sudden Start

We consider the problem that the fluid is initially at rest
and is set in motion by a sudden application of a constant
axial pressure gradient. This readily implies that P, = 0
and P; = const. Performing the integrations, we find
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As t — <, we may recover the steady Hartmann problem.3
Also we may recover the solution in a nonmagnetic field by
letting M — 0.

2. Sudden Removal of the Pressure Gradient

A steady state is suddenly changed by the removal of the
pressure gradient. This states that P, = —P,. The solu-
tions become
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To illustrate the oscillatory nature of the problem, we
present some numerical results of the case of sudden start
with magnetic Prandtl number A/v = 1. Figure 1 shows the
velocity profiles of different Hartmann numbers in dimen-
sionless velocity (pr/Pih*)u at the dimensionless time 7 =
vt/h? = 0.1. TFigure 2 gives the time history of the velocity
magnitudes at the center of the channel and that of the aver-
age velocity.
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Nomenclature
a = x-coordinate locating lateral load
C,,C: = integration constants
EI = flexural rigidity
k = (P/ED)V/?
L = span
M = bending moment
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Table 1 Macauley terms due to lateral loads on axially loaded struts and tie-bars

Term to be added
to basie bending-

Expression to be added to basic deflection equation

Type of lateral load moment equation Strut Tie-bar
. w w w .

Load W concentrated atx = a —W{x — a) wp Sin e — ay — F(x —a) P x — a) — WP sinh k(x — a)
Unif load of intensit; w 2w . w w 2w

or unit longth from z = o "2 @' ppsntHE @) —gpe - gp =0 - gpsinh? e — o)

tox = L

. . 2M

Clockwise couple M, applied Moz — a)° 20 in? iz — a) —[70 sinh?® Yoz — a)

in plane of bending at x = «a

P

M, = applied bending couple

M, = fixing moment atz = 0

P = axial end load

Ry = lateral reaction at x = 0

W = concentrated lateral load

w = intensity of uniformly distributed load
x,y = coordinates of deflection curve

RECENT note! shows that the integration of the dis-

continuous expressions arising in beam deflection prob-
lems may be simplified by the use of Macauley brackets.
The method can be extended to bars which are subjected to
combinations of axial and lateral loads.

Macauley brackets take the form (x — a) and are given the
property that terms containing them are omitted when the
expression inside these brackets becomes negative—that is
when z <a. Thus,

0
fe=0 = g

Struts with Hinged Ends

In the notation of Fig. 1 the bending-moment equation for
z < a may be written

M = —‘P?/ + Bix (1)

and this will be termed the basic bending-moment equation.
The substitution of Eq. (1) in the relationship EI{d%/dx?) =
M leads to the basic deflection equation,

y = Cysin kx + C: cos kx + Rux/P

where k2 = P/EI. '

If we extend Eq. (1) with a Macauley-bracket term which
allows for the lateral load W we obtain the following equa-
tion which represents the bending moment throughout the
strut:

forz <a
forz>a

@

M= —Py+ Rax — W — a) (3)

A single equation representing the deflection curve of the
entire strut must satisfly Eq. (3). Furthermore, the deflec-
tion y and slope dy/dx must be continuous at = a with un-
changing values of C; and C.. These conditions are satisfied
by adding to Eq. (2) the expression

(W/kP) sin k(x — a) — (W/P)x — a)

Table 1 shows the expressions to be added to the basic
bending-moment and deflection equations for the types of
lateral load occurring frequently.

Any number of lateral loads and applied couples can be ac-
commodated in a single deflection equation which requires
only two constants of integration. This contrasts with the
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Fig. 1

classical solution? in which the number of equations increases
as more lateral loads are applied.

The reaction R; may be obtained from the conditions M =
y=0atx L. The constants €y and (s are determined
from the end conditions ¥y = 0 when z = 0 and y = 0 when
2 = L. Thefirst of these gives C's = 0.

The term (x — a)® possesses the usual Macauley property.

An example of this occursin Table 1. Thus,
Oforz<a
— g\ =
Molw — ay %Mo(x — a)O = Myforz>a

Struts with Built-In Ends

Table 1 is alsc applicable to struts with direction-fixed ends.
Suppose the bending moment at the left-hand end is M.
The basic bending-moment and deflection equations become

M =M, — Py + Rz

M

y=Clsink$+02005kx+?+Rlx

P

The Macauley terms from Table 1 are added and the values
of C,Cs, M, and R, are then determined from the conditions
y = dy/dx = 0 when z = 0 and also when x = L. In the
determination of the expression for slope dy/dx the derivative
of the Macauley deflection expression for a concentrated
load W (see Table 1) is written

(W/P)cos k{x — ay — (W/P)la — a)°

to insure that the resulting function is continuous at z = a.
However, it is convenient to replace this result by the equiva-
lent single term

—(2W/P)sin? /ok(z — a)
The Bars with Lateral Loads
If we change the axial load P from compressive to tensile,

the basic bending-moment and deflection equations become:
For hinged ends:

M = Py + R
C, sinh kx + Cs cosh kx — (Riz/P)

Y

For built-in ends:
M =M, + Py + R
C, sinh kz + Cs cosh kx — (M,/P) — (Rw/P)

I

Y

The Macauley terms and expressions to be added to these
basic equations are given in Table 1, those for bending
moment being identical with the terms used for struts.
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